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LETTER TO THE EDITOR 

Some interesting charmonium potentials 

J Killingbeck 
Physics Department, University of Hull, Hull HU6 7RX, UK 

Received 18 August 1980 

Abstract. A simple technique is used to extend and clarify recent results on some 
charmonium confining potentials. One such potential has a convergent Rayleigh- 
Schrodinger series which does not give the correct bound-state energy. 

In a recent note Datta and Mukherjee (1980) studied a Schrodinger equation with a 
confining potential term of the type used in models of the charmonium system: 
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They derived the scaling result 

and concluded that E(( ,  a )  for fixed real [ has a convergent expansion in a-' for 
sufficiently large a. In this Letter we wish to point out that the relevant series converges 
because it is finite for the ground state of each angular momentum type, and we 
conjecture that the same holds for the excited states. We also wish to emphasise that, 
for various simple perturbation problems, the easiest way to proceed is to use the 
method pointed out by Killingbeck (1977) i.e. write down the eigenfunction first, and 
then evaluate the potential. A solid harmonic factor yt in the function ensures that it has 
angular momentum 1, and a radial factor e- fcr )  withf(r) -+ cy) as r -+ cy) will ensure that the 
function can be normalised, If we set $1 = y~ e-"') we quickly find 

-V'A = [p'- ( f ) 2  -t (21 + 2)r-'f]+l. (3) 
Since will give no radial nodes, we are dealing with ground states for each I ,  but an 
extra factor in $I with radial nodes would presumably allow excited states to be treated 
as well. The choice f = $1. + za P gives 1 2 2  

[ -V2- (1+  l ) ~ - ' + a ~ r + a ~ r ~ ] $ ~  =[-$+(21+3)a']1,b~. ( 4 )  

E=a2(Eo+E'a-'+E2a-2+.  , .) (5 ) 

Following the form of equation (2), we can write the energy as 

with only Eo and E2 non-zero, which is the point which was to be established. By 
making the choice f = 3r + g ( r ) ,  where g ( r )  is a polynomial in r, a variety of charmonium- 
type potentials could be found which also yield finite energy series. For the case studied 
above both the a series and the a-' series for the energy are finite. However if the term 
a2r  is replaced by Ka2r in (4), with K deviating by even a little from 1 ,  the a series for 
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the energy becomes divergent asymptotic. Even at K = 1 the a series for quantities 
such as (r) is divergent asymptotic, so that the behaviour of the energy stands out as 
exceptional. Whether the situation is the same for the a-’ series apparently still 
remains to be investigated. 

A confining potential based on an isotropic oscillator potential, with no gluon l / r  
term, results if we set f = iar’ + pr4 in (3). We find 

[ -V2+w2r2+~Ar4+~77r6] t , b~  = (21+3)a+f (6) 
where 

A = 16ap, q = 48p2, U’= a’- (81+20)p. 

Flessas and Das (1980) have studied this case, starting from the Schrodinger 
equation and deducing t,bl after a lengthy calculation. Our alternative procedure is very 
simple and less liable to error; we note that the result 

(3A2/16q) =~~+(81+20)(77/48)~’ ’ ,  (7) 
which follows from our calculation, differs from the result for (3A2/16q) given in 
equation (17) of Flessas and Das (1980). If w = 1 and p is small, then a term -16p’r’ 
can be treated as a small perturbation (with t,bf the exact unperturbed eigenfunction) if 
we wish to know the energy for an oscillator perturbed by an r4 term alone (Killingbeck 
1978a). With an exact unperturbed function, the method of Aharonov and Au (1979) 
provides quadrature formulae for the coefficients in the series for the small energy 
correction. 

If the parameter A = a’ in equation (4) is taken to be real and negative then (4) is still 
formally correct for finite r, but the corresponding is not square-integrable, Because 
of the r4 term, the potential on the left of (4) has bound states both for A > O  and for 
A < O ,  but only for A > O  does the perturbation series -$+(21+3)A give the exact 
energy. For A < 0 the quantity A = E(A) +a- (21 + 3 ) A  is positive and its magnitude 
increases with IA I. The table shows a few typical results; the exact eigenvalues were 
found by numerical integration. This phenomenon is different from the usual one 
(exemplified by the potential -r-l+ Ar) in which there are bound states for A > 0 (but 
not for A < 0) and the energy perturbation series is divergent asymptotic. We anticipate 
that the quantity A tabulated in table 1 represents some function of A which is 
non-analytic at A = 0, and so is not represented by the series. For A > 0, A is zero, and 
the numerical integration method which we used was tested by confirming that it 
correctly gave this result to within For A < 0 the value of A tends to zero rapidly 
with Ih I; for the 1s state, A(-0.01) is less than lo-’ and so could only be found roughly 
by our single precision integration. The finite series for the energy on the right of 
equation (4) is, of course, exact (for A > 0), and we intuitively expect that it is what we 
would obtain by formally calculating the Rayleigh-Schrodinger perturbation series for 

Table 1. A values for the Hamiltonian of equation (4). 

A I = O  I=1 

-0.02 0.000 059 10 0.001 203 07 
-0.03 0.001 586 94 0.011 756 18 
-0.04 0.037 106 08 0.043 506 79 
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a hydrogenic atom with perturbation term Ar +A2?. Explicit analytic evaluation of E2 
and E3 shows that they are indeed zero; to proceed further we have used the hypervirial 
method of Killingbeck (1978b) in a double precision computer calculation to show 
explicitly that the En(2 d n d 16) are zero. A single precision calculation only gives 
exactly zero for the E,, with 2 s n d 10, since this particular case is a severe test of the 
method; each term (Arand A2r2)  on its own gives a viciously divergent energy series, but 
their sum gives a ‘destructive interference’ effect which yields E,, = 0 for n > 1. This 
behaviour is, of course, highly unstable with respect to a change in the coefficient of the r 
term. This isolated change from a divergent energy series to a convergent one is really 
rather misleading, since the exact eigenvalue changes smoothly as the coefficient of the r 
term varies. However, the singular case does give an exact eigenfunction which may be 
useful mathematically, if used in conjunction with the method of Aharonov and Au 
(1979), as explained in our preceding comments on the oscillator problem. 
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